
MATLAB® Compiler SDK™
MATLAB® Production Server™ Testing Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ MATLAB® Production Server™ Testing Guide
© COPYRIGHT 2012–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

MATLAB Production Server Integration Testing
1

Write a Test Client . 1-2

Test Client Data Integration Against MATLAB 1-3
Create a MATLAB Function . 1-3
Prepare for Testing . 1-4
Test Using RESTful API . 1-7
Testing Using Java Client Application 1-12

Functions — Alphabetical List
2

Apps — Alphabetical List
3

Client Programming
4

Create a Java Client . 4-2

Create a C# Client . 4-6

Create a Python Client . 4-10

iii

Contents

Create a C++ Client . 4-12

RESTful API JSON Encode and Decode Functions
5

Persistence Functions
6

iv Contents

MATLAB Production Server
Integration Testing

• “Write a Test Client” on page 1-2
• “Test Client Data Integration Against MATLAB” on page 1-3

1

Write a Test Client
Integration testing with the MATLAB embedded server instance requires a client that
calls the compiled MATLAB functions. The client can be coded using any of the MATLAB
Production Server client APIs.

At a minimum, the client must:

1 Instantiate the client runtime.
2 Connect to the embedded server instance using the port specified in the Production

Server Compiler app.
3 Call the functions being tested with appropriate data.

For information on writing client code, see:

• “Create a Java Client” on page 4-2
• “Create a C# Client” on page 4-6
• “Create a Python Client” on page 4-10
• “Create a C++ Client” on page 4-12

1 MATLAB Production Server Integration Testing

1-2

Test Client Data Integration Against MATLAB

In this section...
“Create a MATLAB Function” on page 1-3
“Prepare for Testing” on page 1-4
“Test Using RESTful API” on page 1-7
“Testing Using Java Client Application” on page 1-12

This example shows you how to test your RESTful API or Java® client for deployment
against MATLAB Production Server using the testing interface in the Production Server
Compiler app. For testing purposes, you will create and use MATLAB function called
addmatrix that accepts two numeric matrices as inputs and returns their sum as an
output.

The testing interface can be accessed by clicking the Test Client button in the
Production Server Compiler app. The Production Server Compiler app is part of
MATLAB Compiler SDK.

Create a MATLAB Function
1 Write a MATLAB function called addmatrix that accepts two numeric matrices as

inputs and returns their sum as an output. Save this file as addmatrix.m.

addmatrix.m

function a = addmatrix(a1, a2)
a = a1 + a2;

2 Test the function at the MATLAB command prompt.

a = [10 20 30; 40 50 60];
b = [100 200 300; 400 500 600];
c = addmatrix(a,b)

c =

 110 220 330
 440 550 660

 Test Client Data Integration Against MATLAB

1-3

Prepare for Testing
1 Open the Production Server Compiler app by typing the following at the MATLAB

command prompt:

productionServerCompiler

2 In the Type section of the toolstrip, select Deployable Archive (.ctf) from the list.
3 Specify the MATLAB functions to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.

1 MATLAB Production Server Integration Testing

1-4

b Using the file explorer, locate and select the addmatrix.m file.
4 In the section titled Include MATLAB function signature file, click the Create

File button. This will create an editable JSON file that contains the function
signatures of the functions included in the archive. By editing this file you can specify
argument types and/or sizes of inputs and outputs, and also provide help information
for each of the inputs. For more information, see “MATLAB Function Signatures in
JSON” (MATLAB Production Server).

If you have an existing JSON file with function signatures, click the Add Existing
File button to add that file instead of the Create File button.

By including this information in your archive, you can use the discovery service
functionality on the server.

Note Only the MATLAB Production Server RESTful API supports the discovery
service. For more information, see “RESTful API” (MATLAB Production Server).

5 Click the Test Client button. The app will switch to the TEST tab.

 Test Client Data Integration Against MATLAB

1-5

a Check the value of the Port field.

It must be:

1 MATLAB Production Server Integration Testing

1-6

• an available port
• the same port number the client is using

For this example, the client will use port 9910.
b Check the box to Enable CORS. This option needs to be enabled if you are using

a client that uses JavaScript®. By enabling CORS the server will accept requests
from different domains.

c Check the box to Enable Discovery. This option needs to be enabled to use the
discovery service. The discovery service returns information about deployed
MATLAB functions as a JSON object.

6 Click Start.

Test Using RESTful API
This example uses the MATLAB “HTTP Interface” (MATLAB) to invoke the RESTful API
and make requests to the testing interface. You can use other tools such cURL or
JavaScript XHR.

Test Discovery Service

1 Import the MATLAB HTTP Interface packages, setup the request, and send the
request to the testing interface.

% Import MATLAB HTTP Interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

% Setup request
requestUri = URI('http://localhost:9910/api/discovery');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
 'ConvertResponse',false);
request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');
request.Method = 'GET';

% Send request
response = request.send(requestUri, options);

2 View the response body.

response.Body.Data

 Test Client Data Integration Against MATLAB

1-7

ans =

 "{"discoverySchemaVersion":"1.0.0","archives":{"matfun":{"archiveSchemaVersion":"1.1.0",...

The response body has been snipped to fit the page. A formatted version of the
response body can be found by expanding ans.

ans

{
 "discoverySchemaVersion": "1.0.0",
 "archives": {
 "matfun": {
 "archiveSchemaVersion": "1.1.0",
 "archiveUuid": "",
 "functions": {
 "addmatrix": {
 "signatures": [
 {
 "help": "",
 "inputs": [
 {
 "help": "input matrix 1",
 "mwsize": [],
 "mwtype": "double",
 "name": "a1"
 },
 {
 "help": "input matrix 2",
 "mwsize": [],
 "mwtype": "double",
 "name": "a2"
 }
],
 "outputs": [
 {
 "help": "output matrix",
 "mwsize": [],
 "mwtype": "double",
 "name": "a"
 }
]
 }
]
 }

1 MATLAB Production Server Integration Testing

1-8

 },
 "matlabRuntimeVersion": "9.6.0"
 }
 }
}

To test using JavaScript XHR you can use the following code:

JavaScript XHR Code for Testing Discovery Service
var data = null;
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
 if (this.readyState === 4) {
 console.log(this.responseText);
 }
});
xhr.open("GET", "http://localhost:9910/api/discovery");
xhr.send(data);

Testing Data Exchange

1 Start a separate session of the MATLAB desktop. This is because you cannot send a
POST request from the same MATLAB session that is running the testing interface.

2 Import the MATLAB HTTP Interface packages, setup the request, and send the
request to the testing interface.

% Import HTTP interface packages
import matlab.net.*
import matlab.net.http.*
import matlab.net.http.fields.*

% Setup message body
body = MessageBody;
a = [10 20 30; 40 50 60];
b = [100 200 300;400 500 600];
payload = mps.json.encoderequest({a,b});
body.Payload = payload;

% Setup request
requestUri = URI('http://localhost:9910/matfun/addmatrix');
options = matlab.net.http.HTTPOptions('ConnectTimeout',20,...
 'ConvertResponse',false);
request = RequestMessage;
request.Header = HeaderField('Content-Type','application/json');

 Test Client Data Integration Against MATLAB

1-9

request.Method = 'POST';
request.Body = body;

% Send request
response = request.send(requestUri, options)

3 View the response body.

response.Body.Data

ans =

 "{"lhs":[[[110,220,330],[440,550,660]]]}"

To test using JavaScript XHR you can use the following code:

JavaScript XHR Code for Testing Data Exchange

var data = JSON.stringify({
 "rhs": [[[10,20,30],[40,50,60]],[[100,200,300],[400,500,600]]],
 "nargout": 1,
 "outputFormat": {
 "mode": "small",
 "nanType": "string"
 }
});
var xhr = new XMLHttpRequest();
xhr.addEventListener("readystatechange", function () {
 if (this.readyState === 4) {
 console.log(this.responseText);
 }
});
xhr.open("POST", "http://localhost:9910/matfun/addmatrix");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.send(data);

Examine Data

1 Switch to the Production Server Compiler app.

1 MATLAB Production Server Integration Testing

1-10

2 In the testing interface, under MATLAB Execution Requests, click the completed
message in the app to see the values exchanged between the client and MATLAB.

3 Click Input to view the arrays passed into MATLAB.
4 Click Output to view the array returned to the client.

Set Breakpoints

1 In the testing interface of the Production Server Compiler, click Breakpoints >
Break on MATLAB function entry.

2 In the separate MATLAB session, resend a POST request to the server.
3 When the MATLAB editor opens, note that a breakpoint is set at the first line in the

function and that processing has paused at the breakpoint.

 Test Client Data Integration Against MATLAB

1-11

You now can use all of the MATLAB debugging tools to step through your function.

Note You can create a timeout error in the client if you take a long time stepping
through the MATLAB function.

4 Note that variables a1 and a2 are displayed in the MATLAB workspace.
5 In the MATLAB editor, click Continue to complete the debug process.

The Server Requests section of the app shows that the request completed
successfully.

6 Click Stop to shutdown the test server.
7 Click Close Test.

Testing Using Java Client Application
1 Create a Java file MPSClientExample.java with following client code:

MPSClientExample.java
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

1 MATLAB Production Server Integration Testing

1-12

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the magic square

 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();
 }
 }

 private static void printResult(double[][] result){
 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

2 At the system command prompt, compile the Java client code using the javac
command.

javac -classpath "matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample.java
3 At the system command prompt, run the Java client.

java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_clients\java\mps_client.jar" MPSClientExample

Note You cannot run the Java client from the MATLAB command prompt.

The application returns the following at the console:

 110.0 220.0 330.0
 440.0 550.0 660.0

 Test Client Data Integration Against MATLAB

1-13

You can debug the data exchanged between the client and MATLAB using the same
steps listed under “Test Using RESTful API” on page 1-7.

See Also

Related Examples
• “Write a Test Client” on page 1-2
• “Package Deployable Archives with Production Server Compiler App”

1 MATLAB Production Server Integration Testing

1-14

Functions — Alphabetical List

2

productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name
productionServerCompiler -build project_name
productionServerCompiler -package project_name

Description
productionServerCompiler opens the Production Server Compiler app for the
creation of a new compiler project.

productionServerCompiler project_name opens the appropriate compiler app with
the project preloaded.

productionServerCompiler -build project_name runs the appropriate compiler
app to build the specified project. The installer is not generated.

productionServerCompiler -package project_name runs the appropriate
compiler app to build and package the specified project. The installer is generated.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

2 Functions — Alphabetical List

2-2

Package a Deployable Archive using an Existing Project

Open the appropriate compiler app to package an existing project file.

productionServerCompiler -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Introduced in R2014a

 productionServerCompiler

2-3

Apps — Alphabetical List

3

Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB
functions. It also packages MATLAB functions into archives for deployment to MATLAB
Production Server.

Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app

icon.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create a Deployable Archive for MATLAB Production Server” (MATLAB Production

Server)
• “Create and Install a Deployable Archive with Excel Integration For MATLAB

Production Server” (MATLAB Production Server)

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

3 Apps — Alphabetical List

3-2

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with
archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

Folder where files for building a custom installer are stored are stored as a character
array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

 Production Server Compiler

3-3

Programmatic Use
productionServerCompiler

See Also

Topics
“Create a Deployable Archive for MATLAB Production Server” (MATLAB Production
Server)
“Create and Install a Deployable Archive with Excel Integration For MATLAB Production
Server” (MATLAB Production Server)

Introduced in R2013b

3 Apps — Alphabetical List

3-4

Client Programming

4

Create a Java Client
This example shows how to write a MATLAB Production Server client using the Java client
API. In your Java code, you will:

• Define a Java interface that represents the MATLAB function.
• Instantiate a proxy object to communicate with the server.
• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file called MPSClientExample.java.
2 Using a text editor, open MPSClientExample.java.
3 Add the following import statements to the file:

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

The interface for the addmatrix function

function a = addmatrix(a1, a2)

a = a1 + a2;

looks like this:

interface MATLABAddMatrix {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

When creating the interface, note the following:

• You can give the interface any valid Java name.
• You must give the method defined by this interface the same name as the

deployed MATLAB function.
• The Java method must support the same inputs and outputs supported by the

MATLAB function, in both type and number. For more information about data type

4 Client Programming

4-2

conversions and how to handle more complex MATLAB function signatures, see
“Java Client Programming” (MATLAB Production Server).

• The Java method must handle MATLAB exceptions and I/O exceptions.
5 Add the following class definition:

public class MPSClientExample
{
}

This class now has a single main method that calls the generated class.
6 Add the main() method to the application.

public static void main(String[] args)
{
}

7 Add the following code to the top of the main() method:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};

These statements initialize the variables used by the application.
8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server
instance.

9 Call the client object’s createProxy method to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface
class as arguments:

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);

The URL value ("http://localhost:9910/addmatrix") used to create the proxy
contains three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (addmatrix)

 Create a Java Client

4-3

For more information about the createProxy method, see the Javadoc included in
the matlabroot/toolbox/compiler_sdk/mps_client folder.

10 Call the deployed MATLAB function in your Java application by calling the public
method of the interface.

 double[][] result = m.addmatrix(a1,a2);
11 Call the client object’s close() method to free system resources.

client.close();
12 Save the Java file.

The completed Java file should resemble the following:
import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix
 {
 double[][] addmatrix(double[][] a1, double[][] a2)
 throws MATLABException, IOException;
 }

public class MPSClientExample {

 public static void main(String[] args){

 double[][] a1={{1,2,3},{3,2,1}};
 double[][] a2={{4,5,6},{6,5,4}};

 MWClient client = new MWHttpClient();

 try{
 MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),
 MATLABAddMatrix.class);
 double[][] result = m.addmatrix(a1,a2);

 // Print the magic square

 printResult(result);

 }catch(MATLABException ex){

 // This exception represents errors in MATLAB
 System.out.println(ex);
 }catch(IOException ex){

 // This exception represents network issues.
 System.out.println(ex);
 }finally{

 client.close();
 }
 }

 private static void printResult(double[][] result){

4 Client Programming

4-4

 for(double[] row : result){
 for(double element : row){
 System.out.print(element + " ");
 }
 System.out.println();
 }
 }
}

13 Compile the Java application, using the javac command or use the build capability of
your Java IDE.

For example, enter the following:
javac -classpath "matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample.java

14 Run the application using the java command or your IDE.

For example, enter the following:
java -classpath .;"matlabroot\toolbox\compiler_sdk\mps_client\java\mps_client.jar" MPSClientExample

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

 Create a Java Client

4-5

Create a C# Client
This example shows how to call a deployed MATLAB function from a C# application using
MATLAB Production Server.

In your C# code, you must:

• Create a Microsoft® Visual Studio® Project.
• Create a Reference to the Client Run-Time Library.
• Design the .NET interface in C#.
• Write, build, and run the C# application.

This task is typically performed by .NET application programmer. This part of the tutorial
assumes you have Microsoft Visual Studio and .NET installed on your computer.

Create a Microsoft Visual Studio Project
1 Open Microsoft Visual Studio.
2 Click File > New > Project.
3 In the New Project dialog, select the project type and template you want to use. For

example, if you want to create a C# Console Application, select Windows in the
Visual C# branch of the Project Type pane, and select the C# Console
Application template from the Templates pane.

4 Type the name of the project in the Name field (Magic, for example).
5 Click OK. Your Magic source shell is created, typically named Program.cs, by

default.

Create a Reference to the Client Run-Time Library

Create a reference in your MainApp code to the MATLAB Production Server client run-
time library. In Microsoft Visual Studio, perform the following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on the right
side), select the name of your project, Magic, highlighting it.

2 Right-click Magic and select Add Reference.
3 In the Add Reference dialog box, select the Browse tab. Browse to the MATLAB

Production Server client runtime, installed at matlabroot\toolbox
\compiler_sdk\mps_client\dotnet. Select
MathWorks.MATLAB.ProductionServer.Client.dll.

4 Client Programming

4-6

4 Click OK. MathWorks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

Design the .NET Interface in C#

In this example, you invoke mymagic.m, hosted by the server, from a .NET client, through
a .NET interface.

To match the MATLAB function mymagic.m, design an interface named Magic.

For example, the interface for the mymagic function:

function m = mymagic(in)
 m = magic(in);

might look like this:

 public interface Magic
 {
 double[,] mymagic(int in1);
 }

Note the following:

• The .NET interface has the same number of inputs and outputs as the MATLAB
function.

• You are deploying one MATLAB function, therefore you define one corresponding .NET
method in your C# code.

• Both MATLAB function and .NET interface process the same types: input type int and
the output type two-dimensional double.

• You specify the name of your deployable archive (magic, which resides in your
auto_deploy folder) in your URL, when you call CreateProxy ("http://
localhost:9910/magic").

Write, Build, and Run the .NET Application

Create a C# interface named Magic in Microsoft Visual Studio by doing the following:

1 Open the Microsoft Visual Studio project, MagicSquare, that you created earlier.
2 In Program.cs tab, paste in the code below.

 Create a C# Client

4-7

Note The URL value ("http://localhost:9910/mymagic_deployed") used to
create the proxy contains three parts:

• the server address (localhost).
• the port number (9910).
• the archive name (mymagic_deployed)

using System;
using System.Net;
using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic
{
 public class MagicClass
 {

 public interface Magic
 {
 double[,] mymagic(int in1);
 }

 public static void Main(string[] args)
 {
 MWClient client = new MWHttpClient();
 try
 {
 Magic me = client.CreateProxy<Magic>
 (new Uri("http://localhost:9910/mymagic_deployed"));
 double[,] result1 = me.mymagic(4);
 print(result1);
 }
 catch (MATLABException ex)
 {
 Console.WriteLine("{0} MATLAB exception caught.", ex);
 Console.WriteLine(ex.StackTrace);
 }
 catch (WebException ex)
 {
 Console.WriteLine("{0} Web exception caught.", ex);
 Console.WriteLine(ex.StackTrace);
 }
 finally
 {
 client.Dispose();
 }
 Console.ReadLine();
 }

 public static void print(double[,] x)
 {

4 Client Programming

4-8

 int rank = x.Rank;
 int [] dims = new int[rank];

 for (int i = 0; i < rank; i++)
 {
 dims[i] = x.GetLength(i);
 }

 for (int j = 0; j < dims[0]; j++)
 {
 for (int k = 0; k < dims[1]; k++)
 {
 Console.Write(x[j,k]);
 if (k < (dims[1] - 1))
 {
 Console.Write(",");
 }
 }
 Console.WriteLine();
 }
 }
 }
}

3 Build the application. Click Build > Build Solution.
4 Run the application. Click Debug > Start Without Debugging. The program

returns the following console output:

16,2,3,13
5,11,10,8
9,7,6,12
4,14,15,1

 Create a C# Client

4-9

Create a Python Client
This example shows how to write a MATLAB Production Server client using the Python
client API. The client application calls the addmatrix function you compiled in “Package
Deployable Archives with Production Server Compiler App” and deployed in “Share a
Deployable Archive on the Server Instance” (MATLAB Production Server).

Create a Python MATLAB Production Server client application:

1 Copy the contents of the matlabroot\toolbox\compiler_sdk\mps_clients
\python folder to your development environment.

2 Open a command line,
3 Change directories into the folder where you copied the MATLAB Production Server

Python client.
4 Run the following command.

python setup.py install
5 Start the Python command line interpreter.
6 Enter the following import statements at the Python command prompt.

import matlab
from production_server import client

7 Open the connection to the MATLAB Production Server instance and initialize the
client runtime.

client_obj = client.MWHttpClient("http://localhost:9910")
8 Create the MATLAB data to input to the function.

a1 = matlab.double([[1,2,3],[3,2,1]])
a2 = matlab.double([[4,5,6],[6,5,4]])

9 Call the deployed MATLAB function.

You must know the following:

• Name of the deployed archive
• Name of the function

client_obj.addmatrix.addmatrix(a1,a2)

matlab.double([[5.0,7.0,9.0],[9.0,7.0,5.0]])

The syntax for invoking a function is client.archiveName.functionName(arg1,
arg2, .., [nargout=numOutArgs]).

4 Client Programming

4-10

10 Close the client connection.

client_obj.close()

 Create a Python Client

4-11

Create a C++ Client
This example shows how to write a MATLAB Production Server client using the C client
API. The client application calls the addmatrix function you compiled in “Package
Deployable Archives with Production Server Compiler App” and deployed in “Share a
Deployable Archive on the Server Instance” (MATLAB Production Server).

Create a C++ MATLAB Production Server client application:

1 Create a file called addmatrix_client.cpp.
2 Using a text editor, open addmatrix_client.cpp.
3 Add the following include statements to the file:

#include <iostream>
#include <mps/client.h>

Note The header files for the MATLAB Production Server C client API are located in
the matlabroot/toolbox/compiler_sdk/mps_client/c/include/mps folder.
folder.

4 Add the main() method to the application.

int main (void)
{
}

5 Initialize the client runtime.

mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);
6 Create the client configuration.

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

7 Create the client context.

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

8 Create the MATLAB data to input to the function.

double a1[2][3] = {{1,2,3},{3,2,1}};
double a2[2][3] = {{4,5,6},{6,5,4}};

int numIn=2;
mpsArray** inVal = new mpsArray* [numIn];

4 Client Programming

4-12

inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

double* data1 = (double *)(mpsGetData(inVal[0]));
double* data2 = (double *)(mpsGetData(inVal[1]));

for(int i=0; i<2; i++)
{
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];
 }
}

9 Create the MATLAB data to hold the output.

int numOut = 1;
mpsArray **outVal = new mpsArray* [numOut];

10 Call the deployed MATLAB function.

Specify the following as arguments:

• client context
• URL of the function
• Number of expected outputs
• Pointer to the mpsArray holding the outputs
• Number of inputs
• Pointer to the mpsArray holding the inputs

mpsStatus status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray**)inVal);

For more information about the feval function, see the reference material included
in the matlabroot/toolbox/compiler_sdk/mps_client folder.

11 Verify that the function call was successful using an if statement.

if (status==MPS_OK)
{
}

 Create a C++ Client

4-13

12 Inside the if statement, add code to process the output.

double* out = mpsGetPr(outVal[0]);

for (int i=0; i<2; i++)
{
 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
}

13 Add an else clause to the if statement to process any errors.

else
{
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;
 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: " << error.details.http.responseCode << ": "
 << error.details.http.responseMessage << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier
 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: " << error.details.general.genericErrorMsg
 << std::endl;
 }

 mpsruntime->destroyLastErrorInfo(&error);
}

14 Free the memory used by the inputs.

for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
delete[] inVal;

15 Free the memory used by the outputs.

4 Client Programming

4-14

for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
delete[] outVal;

16 Free the memory used by the client runtime.

mpsruntime->destroyConfig(config);
mpsruntime->destroyContext(context);
mpsTerminate();

17 Save the file.

The completed program should resemble the following:
#include <iostream>
#include <mps/client.h>

int main (void)
{
 mpsClientRuntime* mpsruntime = mpsInitializeEx(MPS_CLIENT_1_1);

 mpsClientConfig* config;
 mpsStatus status = mpsruntime->createConfig(&config);

 mpsClientContext* context;
 status = mpsruntime->createContext(&context, config);

 double a1[2][3] = {{1,2,3},{3,2,1}};
 double a2[2][3] = {{4,5,6},{6,5,4}};

 int numIn=2;
 mpsArray** inVal = new mpsArray* [numIn];
 inVal[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 inVal[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);
 double* data1 = (double *)(mpsGetData(inVal[0]));
 double* data2 = (double *)(mpsGetData(inVal[1]));
 for(int i=0; i<2; i++)
 {
 for(int j=0; j<3; j++)
 {
 mpsIndex subs[] = { i, j };
 mpsIndex id = mpsCalcSingleSubscript(inVal[0], 2, subs);
 data1[id] = a1[i][j];
 data2[id] = a2[i][j];
 }
 }

 int numOut = 1;
 mpsArray **outVal = new mpsArray* [numOut];

 status = mpsruntime->feval(context,
 "http://localhost:9910/addmatrix/addmatrix",
 numOut, outVal, numIn, (const mpsArray **)inVal);

 if (status==MPS_OK)
 {
 double* out = mpsGetPr(outVal[0]);

 for (int i=0; i<2; i++)
 {

 Create a C++ Client

4-15

 for (int j=0; j<3; j++)
 {
 mpsIndex subs[] = {i, j};
 mpsIndex id = mpsCalcSingleSubscript(outVal[0], 2, subs);
 std::cout << out[id] << "\t";
 }
 std::cout << std::endl;
 }
 }
 else
 {
 mpsErrorInfo error;
 mpsruntime->getLastErrorInfo(context, &error);
 std::cout << "Error: " << error.message << std::endl;

 switch(error.type)
 {
 case MPS_HTTP_ERROR_INFO:
 std::cout << "HTTP: "
 << error.details.http.responseCode
 << ": " << error.details.http.responseMessage
 << std::endl;
 case MPS_MATLAB_ERROR_INFO:
 std::cout << "MATLAB: " << error.details.matlab.identifier
 << std::endl;
 std::cout << error.details.matlab.message << std::endl;
 case MPS_GENERIC_ERROR_INFO:
 std::cout << "Generic: "
 << error.details.general.genericErrorMsg
 << std::endl;
 }
 mpsruntime->destroyLastErrorInfo(&error);
 }

 for (int i=0; i<numIn; i++)
 mpsDestroyArray(inVal[i]);
 delete[] inVal;

 for (int i=0; i<numOut; i++)
 mpsDestroyArray(outVal[i]);
 delete[] outVal;

 mpsruntime->destroyConfig(config);
 mpsruntime->destroyContext(context);
 mpsTerminate();
}

18 Compile the application.

To compile your client code, the compiler needs access to client.h. This header file
is stored in matlabroot/toolbox/compiler_sdk/mps_client/c/include/
mps/.

To link your application, the linker needs access to the following files stored in
matlabroot/toolbox/compiler_sdk/mps_client/c/:

4 Client Programming

4-16

Files Required for Linking

Windows UNIX®/Linux Mac OS X
$arch\lib
\mpsclient.lib

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

 $arch/lib/
libcurl.so

$arch/lib/
libcurl.dylib

 $arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dyli
b

 $arch/lib/
libmwcpp11compat.so

19 Run the application.

To run your application, add the following files stored in matlabroot/toolbox/
compiler_sdk/mps_client/c/ to the application’s path:

Files Required for Running

Windows UNIX/Linux Mac OS X
$arch\lib
\mpsclient.dll

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

$arch\lib
\libprotobuf.dll

$arch/lib/
libcurl.so

$arch/lib/
libcurl.dylib

$arch\lib
\libcurl.dll

$arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dyli
b

 $arch/lib/
libmwcpp11compat.so

The client invokes addmatrix function on the server instance and returns the
following matrix at the console:

5.0 7.0 9.0
9.0 7.0 5.0

 Create a C++ Client

4-17

RESTful API JSON Encode and
Decode Functions

5

mps.json.encode
Convert MATLAB data to JSON text using MATLAB Production Server JSON schema

Syntax
text = mps.json.encode(data)
text = mps.json.encode(data,Name,Value)

Description
text = mps.json.encode(data) encodes MATLAB data and returns JSON text in
JSON schema for MATLAB Production Server. You can use this JSON text on multiple
platforms to encode content for MATLAB Production Server.

text = mps.json.encode(data,Name,Value) specifies additional options with one
or more name-value pair arguments for specific input cases. For example, you can decide
to encode data in the large or small format defined for representing data types.

Examples

Convert a Matrix to JSON Schema for MATLAB Production Server

Encode a 3-by-3 magic square in the JSON format.

mps.json.encode(magic(3))

ans =
 '[[8,1,6],[3,5,7],[4,9,2]]'

Convert a Matrix and Specify Format for JSON Schema for MATLAB Production
Server

Encode a 3-by-3 magic square in JSON using the large format option.

5 RESTful API JSON Encode and Decode Functions

5-2

mps.json.encode(magic(3),'Format','large')

ans =
 '{"mwdata":[8,3,4,1,5,9,6,7,2],"mwsize":[3,3],"mwtype":"double"}'

Convert an Array Containing NaN, Inf, or -Inf to JSON Schema for MATLAB
Production Server

Encode an array containing -Inf, NaN, and Inf in JSON using 'object' in 'NanInfType'
option.

mps.json.encode([-Inf NaN Inf],'NaNInfType','object','Format','large')

ans =
 '{"mwdata":[{"mwdata":"-Inf"},{"mwdata":"NaN"},{"mwdata":"Inf"}], "mwsize":[1,3],"mwtype":"double"}'

Input Arguments
data — MATLAB data that MATLAB Production Server supports
numeric | character | logical | structure | cell

MATLAB data that MATLAB Production Server supports, specified as a numeric,
character, logical, structure, or cell.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: mps.json.encode(data,'Format','large')

Format — Format to encode data
'small' (default) | 'large'

Format to encode MATLAB data, specified as the comma-separated pair consisting of
'Format' and the format 'small' or 'large'.

 mps.json.encode

5-3

The small format is a more simple representation of MATLAB data types in JSON,
whereas the large format is a more generic representation. For more information, see
“JSON Representation of MATLAB Data Types”.

NaNInfType — Format to encode NaN, Inf, and -Inf in data
'string' (default) | 'object'

Format to encode NaN, Inf, and -Inf in data, specified as a comma-separated pair
consisting of 'NaNInfType' and the JSON data-types 'string' or 'object'.

PrettyPrint — Format text for readability
false (default) | true

Format text for readability, specified as a comma-separated pair consisting of
'PrettyPrint' and logical 'true' or 'false'.

PrettyPrint enables better readability for a user when set to true. Syntax is
mps.json.encode(magic(3),'PrettyPrint',true).

Output Arguments
text — JSON-formatted text
character vector

JSON-formatted text for JSON schema for MATLAB Production Server, returned as a
character vector.

See Also
mps.json.decode | mps.json.decoderesponse | mps.json.encoderequest

Introduced in R2018a

5 RESTful API JSON Encode and Decode Functions

5-4

mps.json.decode
Convert a character vector or string in MATLAB Production Server JSON schema to
MATLAB data

Syntax
data = mps.json.decode(text)

Description
data = mps.json.decode(text) parses JSON schema for MATLAB Production Server
to convert it to MATLAB data.

Examples

Decode JSON-Formatted Text for a Matrix

mps.json.decode('[[8,1,6],[3,5,7],[4,9,2]]')

ans =
 8 1 6
 3 5 7
 4 9 2

Decode a Matrix in JSON That Uses large Format

mps.json.decode('{"mwdata":[1,4,3,2],"mwsize":[2,2],"mwtype":"double"}')

 mps.json.decode

5-5

ans =
 1 3
 4 2

Input Arguments
text — JSON text following the schema for MATLAB Production Server
character vector (default) | string

JSON following the schema for MATLAB Production Server, specified as a character
vector or string.

text can be in various formats like small, large, NaNInfType, and PrettyPrint, as
explained in “Name-Value Pair Arguments” on page 5-3 on the mps.json.encode page.

Output Arguments
data — MATLAB data
any MATLAB data type

MATLAB data decoded from MATLAB Production Server JSON text returned as the data-
type encoded in text.

See Also
mps.json.decoderesponse | mps.json.encode | mps.json.encoderequest

Introduced in R2018a

5 RESTful API JSON Encode and Decode Functions

5-6

mps.json.encoderequest
Convert MATLAB data in a server request to JSON text using MATLAB Production Server
JSON schema

Syntax
text = mps.json.encoderequest(rhs)
text = mps.json.encoderequest(rhs,Name,Value)

Description
text = mps.json.encoderequest(rhs) encodes the request that is input to the
deployed MATLAB function using JSON schema for MATLAB Production Server. It builds
a server request that includes MATLAB variables and options, such as 'Nargout' and
'OutputFormat', that are needed to make a call to MATLAB Production Server.

text = mps.json.encoderequest(rhs,Name,Value) specifies additional options
with one or more name-value pair arguments for specific input cases.

Examples

Write MATLAB Production Server Payload

mps.json.encoderequest({[1 2 3 4]})

ans =
 '{"rhs":[[[1,2,3,4]]],"nargout":1,"outputFormat":{"mode":"small","nanType":"string"}}'

Write MATLAB Production Server Payload, and Set Output Parameters

Let rhs = {['Red'], [15], [1 3; 5 7], ['Green']}.

mps.json.encoderequest(rhs, 'Nargout', 3, 'OutputFormat', 'large')

 mps.json.encoderequest

5-7

ans =
 '{"rhs":["Red",15,[[1,3],[5,7]],"Green"],"nargout":3,"outputFormat":{"mode":"large","nanType":"string"}}'

Write a MATLAB Function as MATLAB Production Server Payload

Use the MATLAB function horzcat that horizontally concatenates two matrices.

a = [1 2; 5 6];
b = [3 4; 7 8];
mps.json.encoderequest({horzcat(a,b)})

ans =
 '{"rhs":[[[1,2,3,4],[5,6,7,8]]],"nargout":1,"outputFormat":{"mode":"small","nanType":"string"}}'

Read Response from a sortstudent Function Deployed on MATLAB Production
Server

Execute mps.json.encoderequest and mps.json.decoderesponse to call a function
deployed on MATLAB Production Server using webwrite. In this case, student names and
their corresponding scores are deployed to MATLAB Production Server to the
sortstudents function that sorts students based on their scores. The result returned is
the equivalent to calling the function sortstudents(struct('name', 'Ed',
'score', 83), struct('name', 'Toni', 'score', 91)) from MATLAB.

data = {struct('name', 'Ed', 'score', 83), struct('name', 'Toni', 'score', 91)};
body = mps.json.encoderequest(data);

options = weboptions;

% Create a weboptions object that instructs webread to return JSON text
options.ContentType = 'text';

% Create a weboptions object that instructs webwrite to encode character vector data as JSON to post it to a web service
options.MediaType = 'application/json';

response = webwrite('http://localhost:9910/studentapp/sortstudents', body, options);

result = mps.json.decoderesponse(response);

Input Arguments
rhs — Input arguments for deployed MATLAB function that is called
cell vector of any MATLAB data type supported by MATLAB Production Server

5 RESTful API JSON Encode and Decode Functions

5-8

Input arguments for a MATLAB function deployed on MATLAB Production Server that is
called, specified as a cell vector.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: mps.json.encoderequest(rhs, 'Format', 'large')

Nargout — Number of output arguments for function deployed on MATLAB
Production Server
1 (default) | any positive integer

Number of output arguments for function deployed on MATLAB Production Server,
specified as comma-separated pair consisting of 'Nargout' and number of output
arguments.

mps.json.encoderequest(rhs, 'Nargout', 3).

Format — Format to encode rhs
'small' (default) | 'large'

Format to encode rhs, specified as comma-separated pair consisting of 'Format' and the
format 'small' or 'large'.

The small format is a simpler representation of MATLAB data types in JSON, whereas
the large format is a more generic representation. For more information, see “JSON
Representation of MATLAB Data Types”.

NaNInfType — Format to encode NaN, Inf, -Inf in rhs
'string' (default) | 'object'

Format to encode NaN, Inf, -Inf in rhs, specified as comma-separated pair consisting of
'NaNInfType' and JSON data types 'string' and 'object'.

OutputFormat — Format for response from MATLAB function deployed on
MATLAB Production Server
'small' (default) | 'large'

 mps.json.encoderequest

5-9

Format for response from MATLAB function deployed on MATLAB Production Server,
specified as comma-separated pair consisting of 'OutputFormat' and the format 'small'
or 'large'.

Output format is set using mps.json.encoderequest(rhs, 'OutputFormat',
'large').

OutputNanInfType — Type for response from MATLAB function deployed on
MATLAB Production Server containing NaN, Inf, -Inf
'string' (default) | 'object'

Type for response from MATLAB function deployed on MATLAB Production Server
containing NaN, Inf, -Inf, specified as comma-separated pair consisting of
'OutputNaNInfType' and JSON data type 'string' and 'object'.

NaN-type for output response is set using mps.json.encoderequest(rhs,
'OutputNaNInfType', 'object').

PrettyPrint — Format text for readability
false (default) | true

Format text for readability, specified as a comma-separated pair consisting of
'PrettyPrint' and logical 'true' or 'false'. Syntax is
mps.json.encoderequest(rhs,'PrettyPrint',true).

Output Arguments
text — JSON text
character vector

JSON-formatted text for JSON schema for MATLAB Production Server, returned as a
character vector.

See Also
mps.json.decode | mps.json.decoderesponse | mps.json.encode

Introduced in R2018a

5 RESTful API JSON Encode and Decode Functions

5-10

mps.json.decoderesponse
Convert JSON text from a server response to MATLAB data

Syntax
lhs = mps.json.decoderesponse(response)
error = mps.json.decoderesponse(response)

Description
lhs = mps.json.decoderesponse(response) reads the JSON payload of the output
arguments returned from a successful MATLAB function call.

error = mps.json.decoderesponse(response) reads the JSON payload of the
MATLAB error thrown from a failed MATLAB function call.

Examples

Read from MATLAB Production Server Payload
mps.json.decoderesponse('{"lhs":[[[1, 2, 3, 4]]]}')

ans =
 1x1 cell array
 {1x4 double}

Read response from a sortstudent function deployed on MATLAB Production
Server

Execute mps.json.encoderequest and mps.json.decoderesponse to call a function
deployed on MATLAB Production Server using webwrite. In this case, student names and
their corresponding scores are deployed to MATLAB Production Server to the
sortstudents function that sorts students based on their scores. The result returned is
the equivalent to calling the function sortstudents(struct('name', 'Ed',
'score', 83), struct('name', 'Toni', 'score', 91)) from MATLAB.

 mps.json.decoderesponse

5-11

data = {struct('name', 'Ed', 'score', 83), struct('name', 'Toni', 'score', 91)};
body = mps.json.encoderequest(data);

options = weboptions;

% Create a weboptions object that instructs webread to return JSON text
options.ContentType = 'text';

% Create a weboptions object that instructs webwrite to encode character vector data as JSON to post it to a web service
options.MediaType = 'application/json';

response = webwrite('http://localhost:9910/studentapp/sortstudents', body, options);

result = mps.json.decoderesponse(response);

Input Arguments
response — JSON result from a MATLAB function call
char (default)

JSON result from a MATLAB function call specified as JSON text.

Output Arguments
lhs — Cell vector of output arguments
Cell vector

Cell vector of output arguments that are from a MATLAB function called from MATLAB
Production Server.

error — Generated output when request results in a MATLAB error
struct array

Generated output when request to MATLAB function called from MATLAB Production
Server results in a MATLAB error returned as a struct array.

See Also
mps.json.decode | mps.json.encode | mps.json.encoderequest

Introduced in R2018a

5 RESTful API JSON Encode and Decode Functions

5-12

Persistence Functions

6

mps.cache.Controller
Manage the life cycle of a persistence service in a MATLAB testing environment

Description
mps.cache.Controller is used to manage the life cycle of a persistence service in a
MATLAB testing environment. You can perform various actions such as starting and
stopping the service using the object.

Creation
Create a mps.cache.Controller object using mps.cache.control.

Properties
ActiveConnection — Connection indicator
True | False

This property is read-only.

Indicates whether the connection to the persistence provider is active or not. The value is
True when the persistence service is attached to the MATLAB session, otherwise it is
False.
Example: ActiveConnection: False

ManageService — Service management indicator
True | False | Unknown

This property is read-only.

Indicates whether the controller object is managing the persistence service or not.
ManageService is True if the persistence service is started using the controller's start
method and False if the MATLAB session is attached to the persistence service using the
controller's attach method. In all other cases, the value is set to Unknown.

6 Persistence Functions

6-2

If ManageService is True, destroying the controller object via delete or exiting
MATLAB will stop the persistence service.
Example: ManageService: True

Host — Host name
character vector

This property is read-only.

Name of the system hosting the persistence service.

This property is not displayed when you create a controller that uses MATLAB as a
persistence provider.
Example: Host: 'localhost'

Port — Port number
positive scalar

This property is read-only.

Port number for persistence service.

This property is not displayed when you create a controller that uses MATLAB as a
persistence provider.
Example: Port: 4519

ProviderName — Name of persistence provider
'Redis' | 'MatlabTest'

This property is read-only.

Name of the persistence provider.

Currently, Redis™ is the only supported persistence provider.

You can also use MATLAB as a persistence provider for testing purposes. If you use
MATLAB as a persistence provider, the provider name is displayed as 'MatlabTest'.
Example: ProviderName: 'Redis'
Example: ProviderName: 'MatlabTest'

 mps.cache.Controller

6-3

ConnectionName — Name of connection
character vector | string

This property is read-only.

Name of connection to persistence service.
Example: ConnectionName: 'myRedisConnection'

Folder* — Storage folder path
character vector

This property is read-only.

Storage folder path. The folder displayed is used as a database.

* This property is displayed only when you create a controller that uses MATLAB as a
persistence provider.
Example: Folder: 'c:\tmp'

Object Functions
mps.cache.control Create a persistence service controller object
start Start a persistence service and attach it a to MATLAB session
stop Stop a persistence service and detach it from a MATLAB session
restart Restart a persistence service and attach it to a MATLAB session
attach Connect a MATLAB session to a persistence service that is already

running
detach Disconnect MATLAB session from a persistence service that is

already running
ping Test whether the persistence service is reachable
version Version number for persistence provider

Examples

Create a Redis Service Controller
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

6 Persistence Functions

6-4

ctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Host: 'localhost'
 Port: 4519
 Operations: "read | write | create | update"
 ProviderName: 'Redis'
 ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller
mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')

mctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Folder: 'c:\tmp'
 Operations: "read | write | create | update"
 ProviderName: 'MatlabTest'
 ConnectionName: 'myMATFileConnection'

See Also
mps.cache.DataCache

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 mps.cache.Controller

6-5

mps.cache.DataCache
Represent cache concept in MATLAB code

Description
mps.cache.DataCache represents the concept of cache in MATLAB code. It is an
abstract class that serves as a superclass for each persistence provider-specific data
cache class.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.

Creation
Create a persistence provider-specific subclass of mps.cache.DataCache using
mps.cache.connect.

Properties
See provider-specific subclasses for properties.

Object Functions
mps.cache.connect Connect to cache, or create a cache if it doesn't exist
bytes Return the number of bytes of storage used by value stored at each

key
clear Remove all keys and values from cache
flush Write all locally modified keys to the persistence service
get Fetch values of keys from cache
getp Get the value of a public cache property
isKey Determine if the cache contains specified keys
keys Get all keys from cache

6 Persistence Functions

6-6

length Number of key-value pairs in the data cache
purge Flush all local data to the persistence service
put Write key-value pairs to cache
remove Remove keys from cache
retain Store remote keys from cache locally or return locally stored keys

Examples

Connect to a Redis Cache
Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection')

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

See Also
mps.cache.Controller

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

 mps.cache.DataCache

6-7

Introduced in R2018b

6 Persistence Functions

6-8

mps.sync.TimedMATFileMutex
Represent a MAT-file persistence service mutex

Description
mps.sync.TimedMATFileMutex is synchronization primitive used to protect data in a
MAT-file database from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedMATFileMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of lock
character vector

This property is read-only.

 mps.sync.TimedMATFileMutex

6-9

Name of advisory lock, specified as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex

object
release Release advisory lock on persistence service mutex

Examples

Create a MAT-File Lock Object
mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')
start(mctrl)
lk = mps.sync.lock('myMATFileMutex','Connection','myMATFileConnection')

lk =

 TimedMATFileMutex with properties:

 Expiration: 10
 ConnectionName: 'myMATFileConnection'
 MutexName: 'myMATFileMutex'

See Also
acquire | mps.sync.TimedRedisMutex | mps.sync.mutex | own | release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-10

mps.sync.TimedRedisMutex
Represent a Redis persistence service mutex

Description
mps.sync.TimedRedisMutex is a synchronization primitive used to protect data in a
Redis persistence service from being simultaneously accessed by multiple workers.

Creation
Create a mps.sync.TimedRedisMutex object using mps.sync.mutex.

Properties
Expiration — Duration of lock in seconds
positive integer

This property is read-only.

Duration of advisory lock in seconds.
Example: 10

ConnectionName — Name of connection
character vector

This property is read-only.

Name of connection to persistence service.
Example: 'myRedisConnection'

MutexName — Name of mutex
character vector

This property is read-only.

 mps.sync.TimedRedisMutex

6-11

Name of mutex, returned as a character vector.
Example: 'myMutex'

Object Functions
mps.sync.mutex Create a persistence service mutex
acquire Acquire advisory lock on persistence service mutex
own Check ownership of advisory lock on a persistence service mutex

object
release Release advisory lock on persistence service mutex

Examples

Create a Redis Lock Object
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk =

 TimedRedisMutex with properties:

 Expiration: 10
 ConnectionName: 'myRedisConnection'
 MutexName: 'myMutex'

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.mutex | own | release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-12

acquire
Acquire advisory lock on persistence service mutex

Syntax
TF = acquire(lk,timeout)

Description
TF = acquire(lk,timeout) acquires an advisory lock and returns a logical 1 (true)
if the lock was successful, and a logical 0 (false) otherwise. If the lock is unavailable,
acquire will continue trying to acquire it for timeout seconds.

Examples

Apply Advisory Lock

First, create a persistence service controller object and use that object to start the
persistence service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

TF =

 logical

 acquire

6-13

 1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider,
lk will be a mps.sync.TimedRedisMutex object. If you use a MATLAB as your
persistence provider, lk will be a mps.sync.TimedMATFileMutex object.

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if acquiring the advisory lock was successful, and a logical 0
(false) otherwise.

See Also
mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | mps.sync.mutex |
own | release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-14

attach
Connect a MATLAB session to a persistence service that is already running

Syntax
attach(ctrl)

Description
attach(ctrl) connects a MATLAB session to a persistence service that is already
running.

Examples

Connect a MATLAB Session to a Persistence Service

Attach MATLAB code to a persistence service.

Start a persistence service outside your MATLAB session from system command line
using or using the dashboard. Assuming your started the service using a connection name
myOutsideRedisConnection at port 8899, attach your MATLAB session to it from the
MATLABdesktop.
ctrl = mps.cache.control('myOutsideRedisConnection','Redis','Port',8899);
attach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: attach(ctrl)

 attach

6-15

See Also
detach | restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-16

bytes
Return the number of bytes of storage used by value stored at each key

Syntax
b = bytes(c,keys)

Description
b = bytes(c,keys) returns the number of bytes of storage used by value stored at
each key.

Examples

Get the Number of Bytes of Storage Used by a Value in the Cache

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and then get the number of bytes of storage used by a
value stored at each key in the cache. Represent the keys and the bytes used by each
value of key as a MATLAB table.
put (c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
b = bytes(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), bytes(c,keys(c))','VariableNames',{'Keys','Bytes'})

b =

 72 72 72 80 264

 bytes

6-17

tt =

 5×2 table

 Keys Bytes
 __________ ______

 'keyFive' 264
 'keyFour' 80
 'keyOne' 72
 'keyThree' 72
 'keyTwo' 72

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

A list of all the keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
b — Number of bytes
numeric row vector

Number of bytes used by each value associated with a key, returned as a numeric row
vector.

6 Persistence Functions

6-18

The byte counts in the output vector appear in the same order as the corresponding input
keys. b(i) is the byte count for keys(i).

See Also
get | keys | length | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 bytes

6-19

clear
Remove all keys and values from cache

Syntax
n = clear(c)

Description
n = clear(c) removes all keys and values from cache and returns the number of keys
cleared from the cache in n.

clear removes both local and remote keys and values.

Examples

Clear All Keys and Values from Cache

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

6 Persistence Functions

6-20

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Clear the cache and check if it is empty.

n = clear(c)
k = keys(c)

n =

 int64

 5

k =

 0×1 empty cell array

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

Output Arguments
n — Number of key-value pairs
integer

 clear

6-21

Number of key-value pairs removed, returned as an integer.
Example: 5

See Also
flush | keys | purge | put | remove | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-22

detach
Disconnect MATLAB session from a persistence service that is already running

Syntax
detach(ctrl)

Description
detach(ctrl) disconnects MATLAB session from a persistence service that is already
running.

Examples

Disconnect MATLAB Code

Disconnect MATLAB code from a persistence service.

First, create a persistence service controller object and use that object to start the
persistence service. Once you have a persistence service running, you can connect
MATLAB code to it. You can then disconnect the code from the service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
attach(ctrl)
detach(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.

 detach

6-23

Example: detach(ctrl)

See Also
attach | restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-24

flush
Write all locally modified keys to the persistence service

Syntax
modKeys = flush(c)

Description
modKeys = flush(c) writes all locally modified data in c to the persistence service and
returns a list of keys that have been modified.

flush does not clear the list of retained keys.

Examples

Write All Locally Modified Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 flush

6-25

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Retain a single key locally and verify that it shows up as a local key in the cache object.

retain(c,'keyOne')
display(c)

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {'keyOne'}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Modify the local key and flush it to the remote cache. Display the keys and values in the
cache as a MATLAB table.

put(c,'keyOne',rand(3))
modKeys = flush(c)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

modKeys =

 1×1 cell array

 {'keyOne'}

tt =

 5×2 table

 Keys Values

6 Persistence Functions

6-26

 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [3×3 double]
 'keyThree' [30]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

Output Arguments
modKeys — Modified keys
cell array of character vectors

A list of the modified keys that were written to the persistence service, returned as a cell
array of character vectors.

See Also
clear | keys | purge | remove | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 flush

6-27

get
Fetch values of keys from cache

Syntax
values = get(c,keys)

Description
values = get(c,keys) fetches values of keys specified by keys from the cache
specified by c. Values are returned in the same order as input variables as a cell array.

Examples

Get Values for Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all the keys and associated values and display them as a MATLAB table.
k = keys(c)
v = get(c,{'keyOne','keyTwo','keyThree','keyFour','keyFive'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

k =

 5×1 cell array

6 Persistence Functions

6-28

 {'keyFive' }
 {'keyFour' }
 {'keyOne' }
 {'keyThree'}
 {'keyTwo' }

v =

 1×5 cell array

 {[10]} {[20]} {[30]} {1×2 double} {5×5 double}

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

keys — Keys
cell array of character vectors

 get

6-29

A cell array of keys whose values you want to retrieve from cache.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

Output Arguments
values — Values
cell array

A list of values associated with keys, returned as a cell array.

See Also
getp | keys | length | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-30

getp
Get the value of a public cache property

Syntax
value = getp(c,property)

Description
value = getp(c,property) gets the value of a public cache property.

Ordinarily, you would be able to access the public properties of a cache object using the
dot notation. For example: c.Connection. However, all cache objects use dot reference
and dot assignment to refer to keys stored in the cache rather than cache object
properties. Therefore, c.Connection refers to a key named Connection in the cache
instead of the cache's Connection property.

There is no setp method since all cache properties are read-only.

Examples

Get the Value of a Named, Public, Hidden Property

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retrieve the connection name.

getp(c,'Connection')

 getp

6-31

ans =

 'myRedisConnection'

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

property — Property name
character vector

Property name, specified as a character vector. The common public cache properties are
Name, LocalKeys, and Connection. Provider-specific cache objects may have additional
properties. For example, mps.cache.RedisCache has the properties Host and Port.
Example: 'Connection'

Output Arguments
value — Property value
valid value

A valid property value.

See Also
get | keys | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

6 Persistence Functions

6-32

Introduced in R2018b

 getp

6-33

isKey
Determine if the cache contains specified keys

Syntax
TF = isKey(c,keys)

Description
TF = isKey(c,keys) returns a logical 1 (true) if c contains the specified key, and
returns a logical 0 (false) otherwise.

If keys is an array that specifies multiple keys, then TF is a logical array of the same size,
and TF{i} is true if keys{i} exists in cache c.

Examples

Determine if the Cache Contains Specified Keys

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Determine if the cache contains specified keys.

TF = isKey(c,{'keyOne','keyTW00','keyTREE','key4','keyFive'})

TF =

6 Persistence Functions

6-34

 1×5 logical array

 1 0 0 0 1

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

keys — Keys to search for
character vector | string | cell array of character vectors or strings

Keys to search for in the cache object c, specified as a character vector, string, or cell
array of character vectors or strings. To search for multiple keys, specify keys as a cell
array.
Example: {'keyOne','keyTW00','keyTREE','key4','keyFive'}

Output Arguments
TF — Logical value
logical array

A logical array of the same size as keys indicating which specified keys were found in the
data cache. TF has a logical 1 (true) if c contains a key specified by keys, and a logical
0 (false) otherwise.

See Also
get | keys | length | put

 isKey

6-35

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-36

keys
Get all keys from cache

Syntax
k = keys(c)

Description
k = keys(c) returns a list of all the keys in a data cache as a cell array.

Examples

Get Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Get all keys.

k = keys(c)

k =

 5×1 cell array

 {'keyFive' }
 {'keyFour' }

 keys

6-37

 {'keyOne' }
 {'keyThree'}
 {'keyTwo' }

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

Output Arguments
k — Keys
cell array of character vectors

Keys from cache, returned as a cell array of character vectors.

See Also
bytes | get | isKey | length | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-38

length
Number of key-value pairs in the data cache

Syntax
num = length(c)
num = length(c,location)

Description
num = length(c) returns the total number of key-value pairs in the data cache c.

num = length(c,location) returns the numbers of key-value pairs in the data cache
c stored remotely or locally as specified by location.

Examples

Count the Number of Key-Value Pairs

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Retain a few keys locally.
retain(c, {'keyOne','keyTwo'})

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Count the number of keys-value pairs.

 length

6-39

numTotal = length(c)
numRemote = length(c,'Remote')
numLocal = length(c,'Local')

numTotal =

 int64

 5

numRemote =

 int64

 3

numLocal =

 int64

 2

Since keyOne and keyTwo were retained before being written to the cache, they were
never written to the persistence service. They are stored locally until flushed or purged to
the persistence service.

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

location — Location name
'Remote' | 'Local'

6 Persistence Functions

6-40

Location of keys specified as an enumerated member of the class mps.cache.Location.
The valid location options are either 'Remote' or 'Local'.
Example: 'Remote'

Output Arguments
num — Number of keys
integer

Total number of key-value pairs in the data cache or the number stored remotely or
locally, returned as an integer.

See Also
bytes | get | isKey | keys | put

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 length

6-41

mps.cache.connect
Connect to cache, or create a cache if it doesn't exist

Syntax
c = mps.cache.connect(cacheName)
c = mps.cache.connect(cacheName,'Connection',connectionName)

Description
c = mps.cache.connect(cacheName) connects to a cache when there's a single
connection to a persistence service.

c = mps.cache.connect(cacheName,'Connection',connectionName) connects
to a cache using the connection specified by connectionName when there are multiple
connections to a persistence service.

Examples

Create a Cache When There is a Single Connection to a Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.

When you have a single connection, you do not need to specify the connection name to
mps.cache.connect.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)
start(ctrl)
c = mps.cache.connect('myCache');

c =

6 Persistence Functions

6-42

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Create a Cache When There are Multiple Connections to a Persistence Service

When you have multiple connections to a persistence service, create a cache by
specifying the connection name associated with the service you want to use.

ctrl_1 = mps.cache.control('myRedisConnection1','Redis','Port',4519)
start(ctrl_1)
ctrl_2 = mps.cache.control('myRedisConnection2','Redis','Port',4520)
start(ctrl_2)
c = mps.cache.connect('myCache','Connection','myRedisConnection1')

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection1'

Use getp instead of dot notation to access properties.

Input Arguments
cacheName — Cache name to connect to or create
character vector

Cache name to connect to or create, specified as a character vector.

 mps.cache.connect

6-43

Example: 'myCache'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

Output Arguments
c — Data cache object
persistence provider-specific data cache object

A persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.

See Also
mps.cache.DataCache

Introduced in R2018b

6 Persistence Functions

6-44

mps.cache.control
Create a persistence service controller object

Syntax
ctrl = mps.cache.control(connectionName,Provider,'Port',num)
ctrl = mps.cache.control(connectionName,Provider,'Folder',
folderPath)

Description
ctrl = mps.cache.control(connectionName,Provider,'Port',num) creates a
persistence service controller object using a connection to a persistence service specified
by connectionName, a persistence provider specified by Provider, and a port number
num for the service.

ctrl = mps.cache.control(connectionName,Provider,'Folder',
folderPath) creates a persistence service controller object that uses a folder specified
by folderPath as a database.

Use this syntax when you want to use MATLAB as a persistence provider for testing
purposes.

Examples

Create a Redis Service Controller
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519)

ctrl =

 Controller with properties:

 ActiveConnection: False

 mps.cache.control

6-45

 ManageService: Unknown
 Host: 'localhost'
 Port: 4519
 Operations: "read | write | create | update"
 ProviderName: 'Redis'
 ConnectionName: 'myRedisConnection'

Create a MATLAB Service Controller
mctrl = mps.cache.control('myMATFileConnection','MatlabTest','Folder','c:\tmp')

mctrl =

 Controller with properties:

 ActiveConnection: False
 ManageService: Unknown
 Folder: 'c:\tmp'
 Operations: "read | write | create | update"
 ProviderName: 'MatlabTest'
 ConnectionName: 'myMATFileConnection'

Input Arguments
connectionName — Name of the connection
character vector | string

Name of the connection to the persistence service, specified as a character vector.

The connectionName links a MATLAB session to a persistence service.
Example: 'myRedisConnection'

Provider — Name of the persistence provider
'Redis' | 'MatlabTest'

Name of the persistence provider, specified as a character vector.

You can use MATLAB as a persistence provider for testing purposes. If you use MATLAB
as a persistence provider, specify the provider name as 'MatlabTest'.
Example: 'Redis'

6 Persistence Functions

6-46

Example: 'MatlabTest'

num — Port number
positive scalar

Port number for the persistence service.
Example: 'Port', 4519

folderPath — Storage folder path
character vector

Storage folder path, specified as a character vector.

Specify this input only when you want to use MATLAB as a persistence provider for
testing purposes. A folder specified by folderPath serves as a database.
Example: 'Folder','c:\tmp'

Output Arguments
ctrl — Persistence provider service controller object
mps.cache.Controller object

Persistence provider service controller returned as a mps.cache.Controller object.

See Also
mps.cache.Controller | restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 mps.cache.control

6-47

mps.sync.mutex
Create a persistence service mutex

Syntax
lk = mps.sync.lock(mutexName,'Connection',connectionName,Name,Value)

Description
lk = mps.sync.lock(mutexName,'Connection',connectionName,Name,Value)
creates a database advisory lock object.

Examples

Create a Redis Mutex

First, create a persistence service controller object and use that object to start the
persistence service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.mutex('myMutex','Connection','myRedisConnection')

lk =

 TimedRedisMutex with properties:

 Expiration: 10

6 Persistence Functions

6-48

 ConnectionName: 'myRedisConnection'
 MutexName: 'myMutex'

Input Arguments
mutexName — Mutex name
character vector

Name of persistence service mutex, specified as a character vector.
Example: 'myMutex'

connectionName — Name of connection
character vector

Name of connection to persistence service, specified as a character vector.
Example: 'Connection','myRedisConnection'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Expiration', 10

Expiration — Time in seconds
positive integer

Expiration time in seconds after the lock is acquired.

Other clients will be able to acquire the lock even if you do not release it.
Example: 'Expiration', 10

Output Arguments
lk — Mutex object
persistence service mutex object

 mps.sync.mutex

6-49

A persistence service mutex object. If you use Redis as your persistence provider, lk will
be a mps.sync.TimedRedisMutex object. If you use MATLAB as your persistence
provider, lk will be a mps.sync.TimedMATFileMutex object.

Tips
• A persistence service mutex allows multiple clients to take turns using a shared

resource. Each cooperating client creates a mutex object with the same name using a
connection to a shared persistence service. To gain exclusive access to the shared
resource, a client attempts to acquire a lock on the mutex. When the client finishes
operating on the shared resource, it releases the lock. To prevent lockouts should the
locking client crash, all locks expire after a certain amount of time.

• Acquiring a lock on a mutex prevents other clients from acquiring a lock on that mutex
but it does not lock the persistence service or any keys or values stored in the
persistence service. These locks are advisory only and are meant to be used by
cooperating clients intent of preventing data corruption. Rogue clients will be able to
corrupt or delete data if they do not voluntarily respect the mutex locks.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex | own |
release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-50

own
Check ownership of advisory lock on a persistence service mutex object

Syntax
TF = own(lk)

Description
TF = own(lk) returns a logical 1 (true) if you own an advisory lock on the
persistence service mutex, and returns a logical 0 (false) otherwise.

Examples

Check If You Own the Advisory Lock

First, create a persistence service controller object and use that object to start the
persistence service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Check if you own the advisory lock.

TF = own(lk)

TF =

 logical

 own

6-51

 0

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider,
lk will be a mps.sync.TimedRedisMutex object. If you use a MATLAB as your
persistence provider, lk will be a mps.sync.TimedMATFileMutex object.

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if you own the advisory lock on the persistence service mutex,
and a logical 0 (false) otherwise.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex |
mps.sync.mutex | release

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-52

ping
Test whether the persistence service is reachable

Syntax
ping(ctrl)

Description
ping(ctrl) tests whether the persistence service is reachable. In order to ping a
persistence service, it must be started and attached to yourMATLAB session.

Examples

Ping Persistence Service

Test whether the persistence service is reachable.

First, create a persistence service controller object and use that object to start the
persistence service. Once you have a persistence service running, you can ping the
service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
ping(ctrl)

Sending ping to Redis on localhost:4519.
Redis service running on localhost:4519.

ans =

 logical

 ping

6-53

 1

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: ping(ctrl)

See Also
restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-54

purge
Flush all local data to the persistence service

Syntax
purgedKeys = purge(c)

Description
purgedKeys = purge(c) flushes all local data to the persistence service and removes it
locally.

Examples

Flush All Local Data to the Persistence Service

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally. For more information, see retain.
retain(c, {'keyOne','keyTwo'})

Modify the local keys and purge the data. Display the keys and values in the cache as a
MATLAB table.

put(c,'keyOne',rand(3),'keyTwo', eye(10))
purgedKeys = purge(c)

 purge

6-55

tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})
display(c)

purgedKeys =

 2×1 cell array

 {'keyOne'}
 {'keyTwo'}

tt =

 5×2 table

 Keys Values
 __________ ______________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [3×3 double]
 'keyThree' [30]
 'keyTwo' [10×10 double]

c =

RedisCache with properties:

 Host: 'localhost'
 Port: 4519
 Name: 'myCache'
 Operations: "read | write | create | update"
 LocalKeys: {}
 Connection: 'myRedisConnection'

Use getp instead of dot notation to access properties.

Input Arguments
c — Data cache
persistence provider specific data cache object

6 Persistence Functions

6-56

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

Output Arguments
purgedKeys — Purged keys
cell array of character vectors

List of keys that were written to the persistence service, returned as a cell array of
character vectors.

See Also
clear | flush | keys | length | remove | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 purge

6-57

put
Write key-value pairs to cache

Syntax
put(c,key1,value1,...,keyN,valueN)
put(c,keySet,valueSet)

Description
put(c,key1,value1,...,keyN,valueN) writes key-value pairs to cache. You can
store any type of MATLAB data in a cache.

put(c,keySet,valueSet) writes key-value pairs to cache with keys from by keySet,
each mapped to a corresponding value from valueSet. The input arguments keySet and
valueSet must have the same number of elements, with keySet having elements that
are unique.

Examples

Write a Series of Key-Value Pairs to Cache

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

6 Persistence Functions

6-58

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Write a Set of Keys and Corresponding Values to Cache

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add a set of keys and corresponding values to the cache and display them as a MATLAB
table.

keySet = {'keyOne','keyTwo','keyThree','keyFour','keyFive'}
valueSet = {10, 20, 30, [400 500], magic(5)}
put(d,keySet,valueSet)
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]
 'keyFour' [1×2 double]
 'keyOne' [10]

 put

6-59

 'keyThree' [30]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

key — Key
character vector

Key to add, specified as a character vector.
Example: 'keyFour'

value — Value
array

Value, specified as an array. value can be any valid MATLAB data type.
Example: [400, 500]

keySet — Keys
cell array of character vectors

Keys, specified as a cell array of character vectors.
Example: {'keyOne','keyTwo','keyThree','keyFour','keyFive'}

valueSet — Values
cell array

Values, specified as comma-separated cell array. Each value may be any valid MATLAB
data type.
Example: {10, 20, 30, [400 500], magic(5)}

6 Persistence Functions

6-60

See Also
bytes | clear | get | keys | length | remove

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 put

6-61

release
Release advisory lock on persistence service mutex

Syntax
TF = release(lk)

Description
TF = release(lk) releases an advisory lock on a persistence service mutex. If the lock
expires before you release it, release returns a logical 0 (false). If this occurs, it may
indicate potential data corruption.

Examples

Release Advisory Lock

First, create a persistence service controller object and use that object to start the
persistence service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

Use the connection name to create a persistence service mutex.

lk = mps.sync.lock('myDbLock','Connection','myRedisConnection')

Try to acquire advisory lock. If lock is unavailable, retry acquiring for 20 seconds.

acquire(lk, 20);

Release lock.

TF = release(lk)

6 Persistence Functions

6-62

TF =

 logical

 1

Input Arguments
lk — Mutex object
persistence service mutex object

A persistence service specific mutex object. If you use Redis as your persistence provider,
lk will be a mps.sync.TimedRedisMutex object. If you use a MATLAB as your
persistence provider, lk will be a mps.sync.TimedMATFileMutex object.

Output Arguments
TF — Logical value
logical array

TF has a logical 1 (true) if releasing the advisory lock was successful, and a logical 0
(false) otherwise.

See Also
acquire | mps.sync.TimedMATFileMutex | mps.sync.TimedRedisMutex |
mps.sync.mutex | own

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 release

6-63

remove
Remove keys from cache

Syntax
num = remove(c,keys)

Description
num = remove(c,keys) removes keys and associated values from cache. There is no
way to recover removed keys.

Examples

Remove Keys from Cache

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache and display them as a MATLAB table.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

tt =

 5×2 table

 Keys Values
 __________ ____________

 'keyFive' [5×5 double]

6 Persistence Functions

6-64

 'keyFour' [1×2 double]
 'keyOne' [10]
 'keyThree' [30]
 'keyTwo' [20]

Remove two keys from cache c and display the remaining keys and values in the cache as
a MATLAB table.

num = remove(c,{'keyThree','keyFour'})
tt = table(keys(c), get(c,keys(c))','VariableNames',{'Keys','Values'})

num =

 int64

 2

tt =

 3×2 table

 Keys Values
 _________ ____________

 'keyFive' [5×5 double]
 'keyOne' [10]
 'keyTwo' [20]

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

 remove

6-65

keys — Keys to remove
cell array of character vectors

Keys to remove from cache, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
num — Number of keys removed
integer

Number of keys removed, returned as an integer.

See Also
clear | get | keys | purge | put | retain

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-66

restart
Restart a persistence service and attach it to a MATLAB session

Syntax
restart(ctrl)

Description
restart(ctrl) restarts a persistence service represented by ctrl. You only restart a
services you originally started using start.

Examples

Restart a Persistence Provider

Restart a persistence service.

First, create a persistence service controller object and use that object to start the
persistence service. Once you have a persistence service running, you can then restart it.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
restart(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: restart(ctrl)

 restart

6-67

See Also
attach | detach | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

6 Persistence Functions

6-68

retain
Store remote keys from cache locally or return locally stored keys

Syntax
retain(c,remoteKeys)
localKeys = retain(c)

Description
retain(c,remoteKeys) stores keys from cache locally.

localKeys = retain(c) returns a cell array of keys stored locally.

Examples

Store Keys from Cache Locally and Check Local Keys

Start a persistence service that uses Redis as the persistence provider. The service
requires a connection name and an open port. Once the service is running, you can
connect to the service using the connection name and create a cache.
ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
c = mps.cache.connect('myCache', 'Connection', 'myRedisConnection');

Add keys and values to the cache.
put(c,'keyOne',10,'keyTwo',20,'keyThree',30,'keyFour',[400 500],'keyFive',magic(5))

Retain a few keys locally and check local keys.
retain(c,{'keyThree','keyFour'})
localKeys = retain(c)

localKeys =

 retain

6-69

 1×2 cell array

 {'keyThree'} {'keyFour'}

Input Arguments
c — Data cache
persistence provider specific data cache object

A data cache represented by a persistence provider specific data cache object.

Currently, Redis and MATLAB are the only supported persistence providers. Therefore,
the cache objects will be of type mps.cache.RedisCache or
mps.cache.MATFileCache.
Example: c

remoteKeys — Keys
cell array of character vectors

Remote keys to store locally, specified as a cell array of character vectors.
Example: {'keyThree','keyFour'}

Output Arguments
localKeys — Keys
cell array of character vectors

Locally stored keys, returned as a cell array of character vectors.

Tips
• As a performance optimization you may choose to temporarily store a set of keys and

their values in your MATLAB session or worker instead of the persistence service.
Keys retained in the this fashion will be automatically written to the persistence
service (see flush) when MATLAB exits or when the first function call returns.

• Manually control the lifetime of retained keys with the flush and purge methods.

6 Persistence Functions

6-70

See Also
clear | flush | purge | remove

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 retain

6-71

start
Start a persistence service and attach it a to MATLAB session

Syntax
start(ctrl)

Description
start(ctrl) starts a persistence service represented by ctrl and attaches it to a
current MATLAB session.

• To make a persistence service available in a MATLAB session, the service must be
started and then attached to the MATLAB session. start performs both these actions.

• If a persistence service has already been started, there is no need to call start. Use
attach instead.

• start and stop, attach and detach must be used in pairs.
• If you connected a persistence service to your MATLAB session with start, you must

disconnect with stop.
• If you connected with attach, you must disconnect with detach.

Examples

Start a Persistence Service
Start a persistence service.

First, create a persistence service controller object and use that object to start the
persistence service.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)

6 Persistence Functions

6-72

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: start(ctrl)

See Also
attach | detach | restart | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 start

6-73

stop
Stop a persistence service and detach it from a MATLAB session

Syntax
stop(ctrl)

Description
stop(ctrl) stops a persistence service represented by ctrl and detaches it from a
current MATLAB session.

• You cannot stop a service that has not been started.
• You can only stop a service that has been started using start.
• Exiting MATLAB will automatically call stop on all persistence services that were

started using start.

Examples

Stop a Persistence Service

Stop a persistence service.

First, create a persistence service controller object and use that object to start the
persistence service. Once you have a persistence service running, you can then stop it.

6 Persistence Functions

6-74

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
stop(ctrl)

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: stop(ctrl)

See Also
attach | detach | restart | start

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 stop

6-75

version
Version number for persistence provider

Syntax
version(ctrl)

Description
version(ctrl) returns the version number for the persistence provider. In order to get
the version number of the persistence provider, the persistence service must be started
and attached to yourMATLAB session.

Examples

Get Version Number

Get the version number of the persistence provider that the persistence service is
connected to.

First, create a persistence service controller object and use that object to start the
persistence service. Once you have a persistence service running, you can get the version
number.

ctrl = mps.cache.control('myRedisConnection','Redis','Port',4519);
start(ctrl)
version(ctrl)

6 Persistence Functions

6-76

Redis version: 3.0.504

Input Arguments
ctrl — Service controller
mps.cache.Controller object

Persistence service controller, represented as a mps.cache.Controller object.
Example: version(ctrl)

See Also
restart | start | stop

Topics
“Use a Data Cache to Persist Data” (MATLAB Production Server)

Introduced in R2018b

 version

6-77

